ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Takuya Yamashita, Ikken Sato, Takeshi Honda, Kenichiro Nozaki, Hiroyuki Suzuki, Marco Pellegrini, Takeshi Sakai, Shinya Mizokami
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1517-1537
Technical Paper | doi.org/10.1080/00295450.2019.1704581
Articles are hosted by Taylor and Francis Online.
Estimation and understanding of the state of the fuel debris and fission products inside the plant comprise an essential step in the decommissioning of Tokyo Electric Power Company Holdings’ Fukushima Daiichi nuclear power station (1F). However, because of the plant’s high-radiation environment, direct observation of the plant interior is difficult. Therefore, in order to understand the plant’s interior conditions, comprehensive analysis and evaluation based on various measurement data from the plant, analysis of plant data during the accident progression phase, and information obtained from computer simulations for this phase are necessary. These evaluations can be used to estimate the conditions of the interior of the reactor pressure vessel (RPV) and the primary containment vessel (PCV). This paper addresses 1F Unit 2 as the subject to produce an estimated map of the fuel debris distribution from data obtained about the RPV and PCV based on comprehensive evaluation of various measurement data and information obtained from the accident progression analysis, which were released to the public in June 2018.