ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Emerald D. Ryan, Chad L. Pope
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1506-1516
Technical Paper | doi.org/10.1080/00295450.2019.1704576
Articles are hosted by Taylor and Francis Online.
Flooding is a hazard for nuclear power plants (NPPs) and has caused extensive damage and economic impact. Improved NPP flooding risk characterization starts with improving scenario realism by using physics-based flooding simulations. Smoothed particle hydrodynamics (SPH) is one method for modeling fluid flow and is being investigated for NPP flooding simulation. While still in its infancy as a fluid simulation tool, SPH offers enticing features especially in three-dimensional modeling. However, when conducting SPH simulations, users must establish, inter alia, the appropriate particle spacing, which can be a tedious and time-consuming process. This paper describes the coupling of the SPH code Neutrino and the Idaho National Laboratory developed Risk Analysis Virtual Environment (RAVEN). By coupling Neutrino and RAVEN, the RAVEN optimization capabilities can now be applied to the particle spacing selection problem. A brief description of SPH, the overall capabilities of RAVEN, and the protocol used to couple the codes are provided. Additionally, the paper details a hypothetical problem and demonstrates the ability of automating the particle spacing selection and performing an example particle spacing optimization using RAVEN. With the Neutrino/RAVEN coupling established, a wide range of capabilities can now be utilized including optimization, reduced order model training and analysis, uncertainty quantification, sensitivity analysis, etc. Previously, these capabilities would require extensive work and time from the Neutrino user. Now, these capabilities are readily available and require only the creation of a RAVEN input file.