ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Xuejing Li
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1494-1505
Technical Paper | doi.org/10.1080/00295450.2019.1710432
Articles are hosted by Taylor and Francis Online.
An electromagnetic flowmeter (EMFM) has been used in the main cooling loop of the fast reactor, but the large-sized magnet structure of conventional EMFMs was not adopted. Therefore, it is necessary to develop a novel EMFM with small-sized magnets for the fast reactor. But the fear is that the decrease in the magnetic field and the end effect will make the EMFM’s performance worse, though there is no detailed information about the end effect due to such small-sized magnets. This paper describes the EMFM with small-sized magnets for coolant monitoring. By using three-dimensional steady-state electromagnetic analysis, we have studied numerically the end effect of an EMFM with saddle-shaped permanent magnets that are smaller in size than the pipe diameter. Consequently, it has been clarified that the performance of an EMFM can be improved by utilizing the effect of the downstream end of magnets and by combining the inclined electrodes and the effect of the circumferential ends of magnets.