ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Hongping Sun, Jian Deng, Dahuan Zhu, Yapei Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1481-1493
Technical Paper | doi.org/10.1080/00295450.2020.1713672
Articles are hosted by Taylor and Francis Online.
Sodium combustion oxide aerosols are the main carriers of radioactive materials in a sodium-cooled fast reactor (SFR) during sodium fire accidents. Therefore, it is of great significance to simulate aerosol behavior in sodium pool fires to evaluate radioactive source terms in the containment or environment. In this work, a numerical method has been developed to simulate sodium oxide aerosol behavior during sodium pool fires. The Classical Nucleation Theory has been taken into account to simulate gas-to-particle conversion (GPC). The model has been evaluated theoretically in 280 cases with three main parameters: sodium pool temperature, pool diameter, and oxygen concentration. The correlation established by fitting data points is associated with the sodium evaporation rate. The SFA code has been developed based on advanced sodium pool combustion and aerosol models coupled with GPC correlations. In comparison with the experimental data, the code-calculated average atmospheric temperature, airborne aerosol concentration, and particle size are in good agreement with the data, which indicate that the method is reliable and can be applied in code development in the future.