ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Hongping Sun, Jian Deng, Dahuan Zhu, Yapei Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1481-1493
Technical Paper | doi.org/10.1080/00295450.2020.1713672
Articles are hosted by Taylor and Francis Online.
Sodium combustion oxide aerosols are the main carriers of radioactive materials in a sodium-cooled fast reactor (SFR) during sodium fire accidents. Therefore, it is of great significance to simulate aerosol behavior in sodium pool fires to evaluate radioactive source terms in the containment or environment. In this work, a numerical method has been developed to simulate sodium oxide aerosol behavior during sodium pool fires. The Classical Nucleation Theory has been taken into account to simulate gas-to-particle conversion (GPC). The model has been evaluated theoretically in 280 cases with three main parameters: sodium pool temperature, pool diameter, and oxygen concentration. The correlation established by fitting data points is associated with the sodium evaporation rate. The SFA code has been developed based on advanced sodium pool combustion and aerosol models coupled with GPC correlations. In comparison with the experimental data, the code-calculated average atmospheric temperature, airborne aerosol concentration, and particle size are in good agreement with the data, which indicate that the method is reliable and can be applied in code development in the future.