ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Cihang Lu, Zeyun Wu, Sarah Morgan, James Schneider, Mark Anderson, Liangyu Xu, Emilio Baglietto, Matthew Bucknor, Matthew Weathered, Sama Bilbao y Leon
Nuclear Technology | Volume 206 | Number 10 | October 2020 | Pages 1465-1480
Technical Paper | doi.org/10.1080/00295450.2020.1719799
Articles are hosted by Taylor and Francis Online.
Investigating thermal stratification in the upper plenum of a sodium fast reactor (SFR) is currently a technology gap in SFR safety analysis. Understanding thermal stratification will promote safe operation of the SFR before its commercial deployment. Stratified layers of liquid sodium with a large vertical temperature gradient could be established in the upper plenum of an SFR during a down-power or a loss-of-flow transient. These stratified layers are unstable and could result in uncertainties for the core safety of an SFR. In order to predict the occurrence of the thermal stratification efficiently, we developed a one-dimensional (1-D) transport model to estimate the temperature profile of the ambient fluid in the upper plenum. This model demands much less computational effort than computational fluid dynamics (CFD) codes and provides calculations with higher fidelity than historical system-level codes. Two flow conditions were considered separately in the current study depending on if in-vessel components are presented in the upper plenum. For the condition where in-vessel components, specifically the upper internal structure, are presented, we assumed that the impinging sodium was evenly dispersed in the ambient fluid within the distance between the bottom of the in-vessel component and the jet inlet surface. For the condition where no in-vessel components are presented, we assumed that the impinging sodium was evenly dispersed in the ambient fluid within the jet length, which was determined through data-driven trainings. The newly developed 1-D model showed similar performance with the CFD model in both cases. However, due to the assumption of flat profiles of the impinging jet axial dispersion rate, nonnegligible discrepancies between the 1-D prediction and the measured data were observed.