ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Pellegrini, L. Herranz, M. Sonnenkalb, T. Lind, Y. Maruyama, R. Gauntt, N. Bixler, A. Morreale, K. Dolganov, T. Sevon, D. Jacquemain, C. Journeau, J. H. Song, Y. Nishi, S. Mizokami
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1449-1463
Technical Paper | doi.org/10.1080/00295450.2020.1724731
Articles are hosted by Taylor and Francis Online.
The Organisation for Economic Co-operation and Development (OECD)/Nuclear Energy Agency (NEA) Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station (BSAF), which started in 2012 and continued until 2018, was one of the earliest responses to the accident at Fukushima Daiichi. The project, divided into two phases, addressed the investigation of the accident at Units 1, 2, and 3 by severe accident (SA) codes until 500 h, focusing on thermal hydraulics, core relocation, molten corium concrete interaction (MCCI), and fission product release and transport. The objectives of the BSAF were to make up plausible scenarios based primarily on SA forensic analysis, support the decommissioning, and inform SA code modeling. The analysis and comparison among the institutes have brought up vital insights regarding the accident progression, identifying periods of core meltdown and relocation and reactor pressure vessel (RPV) and primary containment vessel (PCV) leakage/failure through the comparison of pressure, water level, and containment atmosphere monitoring system (CAMS) signatures. The combination of code results and inspections (muon radiography, PCV inspection) has provided a picture of the current status of the debris distribution and plant status. All units present a large relocation of core materials and all of them present ex-vessel debris with Unit 1 and Unit 3 showing evidence of undergoing MCCI. Uncertainties have been identified, in particular on the time and magnitude of events such as corium relocation in the RPV and into the cavity floor and RPV and PCV rupture events. Main uncertainties resulting from the project are the large and continuous MCCI progression predicted by basically all the SA codes and the leak pathways from the RPV to the PCV and the PCV to the reactor building and environment. The BSAF project represents a pioneering exercise that has set the basis and provided lessons learned not only for code improvement but also for the development of new related projects to investigate in detail further aspects of the Fukushima Daiichi accident.