ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Jin-Hwa Yang, Hwang Bae, Sung-Uk Ryu, Byong Guk Jeon, Sung-Jae Yi, Hyun-Sik Park
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1421-1435
Technical Paper | doi.org/10.1080/00295450.2020.1775450
Articles are hosted by Taylor and Francis Online.
Even for small modular reactors (SMRs) with all large pipes removed, a small-break loss-of-coolant accident (SBLOCA) is an important design-basis accident (DBA). Experimental simulation of the SBLOCA scenario is essential before a prototype reactor is realized. The system-integrated modular advanced reactor (SMART) is one of the SMRs developed by the Korea Atomic Energy Research Institute. An integral test loop, SMART-ITL, was also constructed to carry out several types of integral thermal-hydraulic effects tests for the prototype reactor. The SMART-ITL was designed with a preserved height, 1/7th diameter, and 1/49th area, and volume-scaling ratios. Two types of passive safety systems were equipped in the SMART-ITL: a passive safety injection system (PSIS) and a passive residual heat removal system (PRHRS). The PSIS was designed to refill the coolant in the reactor coolant system (RCS) for 72 h after an accident. Under accident conditions the PRHRS prevents overheating and overpressurization of the RCS using two-phase natural circulation. The SBLOCA on the passive safety injection line is a significant DBA that should be validated for differences in break size. In this paper, the effects of two different break sizes, 2 and 7/32 in., were analyzed in order to study the effect of the maximum and minimum mass and energy loss of the RCS. In order to simulate a clear difference between maximum and minimum mass and energy loss of the RCS, heat removal by the PRHRS was performed in the maximum break size (2-in.) accident, and heat removal by the PRHRS was not conducted in the minimum break size (7/32-in.) accident. The difference in mass and energy loss of the RCS will have a significant impact on the operation of the automatic depressurization system. Using the two extreme accident simulations, it was possible to confirm the difference in accident progression caused by the difference in break size and the characteristics of the PSIS.