ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Marica Eboli, Alessandro Del Nevo, Nicola Forgione, Fabio Giannetti, Daniele Mazzi, Marco Ramacciotti
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1409-1420
Technical Paper | doi.org/10.1080/00295450.2020.1749480
Articles are hosted by Taylor and Francis Online.
In the framework of the European Union MAXSIMA project, the safety of the steam generator (SG) adopted in the primary loop of the Heavy Liquid Metal Fast Reactor has been studied investigating the consequences and damage propagation of a SG tube rupture event and characterizing leak rates from typical cracks. Instrumentation able to promptly detect the presence of a crack in the SG tubes may be used to prevent its further propagation, which would lead to a full rupture of the tube. Application of the leak-before-break concept is relevant for improving the safety of a reactor system and decreasing the probability of a pipe break event. In this framework, a new experimental campaign (Test Series C) has been carried out in the LIFUS5/Mod3 facility, installed at ENEA Centro Ricerche Brasimone, in order to characterize and to correlate the leak rate through typical cracks occurring in the pressurized tubes with signals detected by proper transducers. Test C1.3_60 was executed injecting water at about 20 bars and 200°C into lead-bismuth eutectic alloy. The injection was performed through a laser microholed plate 60 μm in diameter. Analysis of the thermohydraulic data permitted characterization of the leakage through typical cracks that can occur in the pressurized tubes of the SG. Analysis of the data acquired by microphones and accelerometers highlighted that it is possible to correlate the signals to the leakage and the rate of release.