ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Chan Soo Kim, Byung Ha Park, Eung Seon Kim, Min Hwan Kim
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1397-1408
Technical Paper | doi.org/10.1080/00295450.2020.1735228
Articles are hosted by Taylor and Francis Online.
The Korea Atomic Energy Research Institute (KAERI) has developed the Core Reliable Optimization and thermofluid Network Analysis (CORONA) code for core thermofluid analysis of a prismatic high-temperature gas-cooled reactor (HTGR). KAERI performed scaled-down standard fuel block (SFB) heated tests at a helium experimental loop to validate the CORONA code. The scaled-down SFB was designed based on the core thermofluid design for a 350-MW(thermal) HTGR. The reference test condition was selected to maintain the Reynolds number of the coolant channels and the bypass gaps. The test section had seven coolant holes and 12 fuel holes considering KAERI’s helium loop circulator design. The material of the fuel block was Al2O3, selected to simulate the low thermal conductivity of the irradiated graphite at the high-temperature condition. The bypass gap structure was made of stainless steel 304 to minimize gap size deformation at the heated condition. This paper presents a comparison between the test results and the CORONA analysis results. The test parameter was the nitrogen flow velocity (3.6 to 6.0 kg/min) and constant heated condition.