ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Chan Soo Kim, Byung Ha Park, Eung Seon Kim, Min Hwan Kim
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1397-1408
Technical Paper | doi.org/10.1080/00295450.2020.1735228
Articles are hosted by Taylor and Francis Online.
The Korea Atomic Energy Research Institute (KAERI) has developed the Core Reliable Optimization and thermofluid Network Analysis (CORONA) code for core thermofluid analysis of a prismatic high-temperature gas-cooled reactor (HTGR). KAERI performed scaled-down standard fuel block (SFB) heated tests at a helium experimental loop to validate the CORONA code. The scaled-down SFB was designed based on the core thermofluid design for a 350-MW(thermal) HTGR. The reference test condition was selected to maintain the Reynolds number of the coolant channels and the bypass gaps. The test section had seven coolant holes and 12 fuel holes considering KAERI’s helium loop circulator design. The material of the fuel block was Al2O3, selected to simulate the low thermal conductivity of the irradiated graphite at the high-temperature condition. The bypass gap structure was made of stainless steel 304 to minimize gap size deformation at the heated condition. This paper presents a comparison between the test results and the CORONA analysis results. The test parameter was the nitrogen flow velocity (3.6 to 6.0 kg/min) and constant heated condition.