ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Xiaoyang Gaus-Liu, Thomas Cron, Beatrix Fluhrer
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1385-1396
Technical Paper | doi.org/10.1080/00295450.2020.1743102
Articles are hosted by Taylor and Francis Online.
In-vessel melt retention (IVMR) is a promising strategy in severe accident management for light water reactors. This strategy is not only adopted in the VVER 440 or AP600 reactors, but also included in higher-power reactors around 1000 MW(electric), like the AP1000 and Chinese CPR 1000. There is still a large uncertainty of IVMR by external cooling at powers higher than 1000 MW(electric), and especially where a thin metallic layer appears on the top of a heat-generating oxide layer. Less knowledge based on large-scale experiments is available until now of the interactive physical, chemical, and thermohydraulic processes between the oxide layer and the metallic layer. A test series of naturally separated two liquid layers was conducted in the upgraded LIVE2D test facility in Karlsruhe Institute of Technology using a nitrate salt mixture and high-temperature oil as the lower layer and upper layer simulant, respectively. The transparent front wall of the test vessel enables direct observation of global convection patterns of the melts and the response of the crust at the layer interface. The experiment reveals major thermohydraulic characteristics of the metallic layer during the transient and steady states. The intensity of the heat flux focusing effect in dependence of layer thickness can be clearly identified.