ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xiaoyang Gaus-Liu, Thomas Cron, Beatrix Fluhrer
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1385-1396
Technical Paper | doi.org/10.1080/00295450.2020.1743102
Articles are hosted by Taylor and Francis Online.
In-vessel melt retention (IVMR) is a promising strategy in severe accident management for light water reactors. This strategy is not only adopted in the VVER 440 or AP600 reactors, but also included in higher-power reactors around 1000 MW(electric), like the AP1000 and Chinese CPR 1000. There is still a large uncertainty of IVMR by external cooling at powers higher than 1000 MW(electric), and especially where a thin metallic layer appears on the top of a heat-generating oxide layer. Less knowledge based on large-scale experiments is available until now of the interactive physical, chemical, and thermohydraulic processes between the oxide layer and the metallic layer. A test series of naturally separated two liquid layers was conducted in the upgraded LIVE2D test facility in Karlsruhe Institute of Technology using a nitrate salt mixture and high-temperature oil as the lower layer and upper layer simulant, respectively. The transparent front wall of the test vessel enables direct observation of global convection patterns of the melts and the response of the crust at the layer interface. The experiment reveals major thermohydraulic characteristics of the metallic layer during the transient and steady states. The intensity of the heat flux focusing effect in dependence of layer thickness can be clearly identified.