ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
E. Studer, D. Abdo, S. Benteboula, G. Bernard-Michel, B. Cariteau, N. Coulon, F. Dabbene, Ph. Debesse, S. Koudriakov, C. Ledier, J.-P. Magnaud, O. Norvez, J.-L. Widloecher, A. Beccantini, S. Gounand, J. Brinster
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1361-1373
Technical Paper | doi.org/10.1080/00295450.2020.1731406
Articles are hosted by Taylor and Francis Online.
The containment of a nuclear reactor is a component whose loss in an accident has serious consequences on property, persons, and environment. The Fukushima accident reminded us of this reality. For more than 30 years, the French Nuclear Energy and Alternative Energies Commission has been conducting research on the failure modes of these enclosures, particularly on their slow pressurization during a steam release and hydrogen risk. Significant progress has been made on wall condensation and its spatial distribution, the occurrence and erosion of gas stratification, and the impact of mitigation systems, such as spraying and catalytic recombiners. This knowledge has been included in numerical tools and internationally recognized expertise. These tools have also been used for the safety of the hydrogen energy industry. The emergence of new systems, particularly passive systems and new light water reactor concepts, has led us to examine new questions that will have to be addressed in the coming years. This examination is done in view of current computational fluid dynamics code capabilities and limitations.