ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
E. Studer, D. Abdo, S. Benteboula, G. Bernard-Michel, B. Cariteau, N. Coulon, F. Dabbene, Ph. Debesse, S. Koudriakov, C. Ledier, J.-P. Magnaud, O. Norvez, J.-L. Widloecher, A. Beccantini, S. Gounand, J. Brinster
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1361-1373
Technical Paper | doi.org/10.1080/00295450.2020.1731406
Articles are hosted by Taylor and Francis Online.
The containment of a nuclear reactor is a component whose loss in an accident has serious consequences on property, persons, and environment. The Fukushima accident reminded us of this reality. For more than 30 years, the French Nuclear Energy and Alternative Energies Commission has been conducting research on the failure modes of these enclosures, particularly on their slow pressurization during a steam release and hydrogen risk. Significant progress has been made on wall condensation and its spatial distribution, the occurrence and erosion of gas stratification, and the impact of mitigation systems, such as spraying and catalytic recombiners. This knowledge has been included in numerical tools and internationally recognized expertise. These tools have also been used for the safety of the hydrogen energy industry. The emergence of new systems, particularly passive systems and new light water reactor concepts, has led us to examine new questions that will have to be addressed in the coming years. This examination is done in view of current computational fluid dynamics code capabilities and limitations.