ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Scott J. Weber, Etienne M. Mullin
Nuclear Technology | Volume 206 | Number 9 | September 2020 | Pages 1351-1360
Technical Paper | doi.org/10.1080/00295450.2020.1756160
Articles are hosted by Taylor and Francis Online.
During a severe accident in a nuclear reactor, there are a number of phenomenological events that can present a challenge to containment integrity. These include the generation and combustion of hydrogen, energetic fuel-coolant interactions, thermal attack of fission product barriers, core-concrete interactions, direct containment heating, and gradual overpressurization. The advanced design of the NuScale small modular reactor (SMR) has resulted in the reduced likelihood and severity of severe accident challenges to containment. This paper discusses the features of the NuScale design that reduce the likelihood of occurrence of these severe accident phenomena and also discusses the ability of containment to survive in the unlikely event that they do occur. The impact of severe accident phenomena for the NuScale design is compared and contrasted against other advanced light water reactors (ALWRs), such as the AP1000 reactor and the Economic Simplified Boiling Water Reactor (ESBWR), as well as the existing fleet, using information from publicly available documents.