ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Jonathan G. Teague, Roberta N. Mulford
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1195-1212
Technical Paper | doi.org/10.1080/00295450.2019.1701345
Articles are hosted by Taylor and Francis Online.
Impact testing of general purpose heat sources (GPHSs) and their component GPHS clads is done to benchmark extensive safety calculations quantifying launch safety. Impact testing is done in the Isotope Fuels Impact Tester (IFIT), a large-bore gas gun at Los Alamos National Laboratory. Efforts to conduct an impact test at the extreme low end of the temperature range for launch have highlighted uncertainties in determining the GPHS clad temperature during impact tests. In IFIT impact tests, the GPHS clad temperature is inferred from the temperature of the radiological confinement. Heating tests have been done in the IFIT to determine the fueled clad surface temperature as a function of the surface temperature of the tantalum radiological confinement can. Direct measurement of clad temperatures in the impact configuration are described and the effect of emissivity of the various components indicated. The analytical model used to predict clad temperatures is seen to work well at temperatures above 625°C. Appropriate values of emissivity for use in the model were measured in the experiment. Calculation of the experimental clad impact temperature using the ANSYS thermal transport model is necessary at clad temperatures below 625°C. ANSYS modeling indicates that the clad temperature in a recent low-temperature impact was outside the relevant range for launch safety modeling of GPHS clad behavior.