ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Charles R. Daily, Joel L. McDuffee
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1182-1194
Technical Paper | doi.org/10.1080/00295450.2019.1674594
Articles are hosted by Taylor and Francis Online.
Efforts to reestablish a domestic 238Pu production capability in support of National Aeronautics and Space Administration mission objectives are ongoing throughout the U.S. Department of Energy complex. The Plutonium-238 Supply Project (PSP) was initiated in response to a report published by the National Research Council in 2011 stating that “without a restart of 238Pu production, it will be impossible for the United States, or any other country, to conduct certain important types of planetary missions after this decade.” The PSP is targeting a sustained, constant production rate of 1.5 kg/year of heat source PuO2 for several years. Design and optimization studies of 237Np-bearing targets are underway at Oak Ridge National Laboratory (ORNL). It is anticipated that targets will be irradiated in ORNL’s High Flux Isotope Reactor (HFIR) and in the Advanced Test Reactor (ATR) at Idaho National Laboratory. A variety of target materials, containments, arrangements, and irradiation histories have been analyzed, and the results indicate that a sufficient quantity of 238Pu can be produced in HFIR and ATR to fulfill the PSP’s constant production rate target. This paper focuses on the design and optimization of new target configurations containing pellets that are (1) ~93% of the theoretical density of NpO2, (2) loaded into pins of cladding materials that can be handled as solid waste following postirradiation 238Pu recovery operations, (3) irradiated in various vertical experiment facility (VXF) locations in the HFIR permanent beryllium reflector, and (4) rotated within and/or moved to another VXF location following each HFIR operational cycle to maximize 238Pu production and minimize peak heat generation rates.