ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Yu Ji, ZeGuang Li, Jun Sun, ErSheng You, MingGang Lang, Lei Shi
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1155-1170
Technical Paper | doi.org/10.1080/00295450.2020.1760703
Articles are hosted by Taylor and Francis Online.
Nuclear thermal propulsion (NTP) could be an advanced technology to facilitate a new and excellent rocket engine that would at least double the performance of the best conventional chemical rocket engines. NTP has been under development for several decades and was selected as the leading candidate technique for the manned mission to Mars, as suggested in Design Reference Architecture 5.0. During development, many concepts have been proposed, designed, and tested. Among which, the particle bed reactor (PBR) is the one of highest performance, and its compact and lightweight features make it ideal for space applications. In this paper, the thermal-hydraulic characteristics of a PBR are mainly investigated through two studies. The first study is to evaluate whether the principles derived from the PBR of uniform heat release could be applied in the cases of a nonuniform heating profile. The second study is to analyze the effects of some aspects, including porosity of the hot frit and cold frit, power shift, inlet temperature of the coolant on the internal flow, and heat transfer processes in the PBR of a nonuniform heat release. These findings may provide technical support for the subsequent design and optimization of the PBR.