ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Daniel K. Bond, Braden Goddard, Robert C. Singleterry, Jr., Sama Bilbao y León
Nuclear Technology | Volume 206 | Number 8 | August 2020 | Pages 1120-1139
Technical Paper | doi.org/10.1080/00295450.2019.1681221
Articles are hosted by Taylor and Francis Online.
Materials have a primary purpose in the design of space vehicles, such as fuels, walls, racks, windows, etc. Additionally, each will also effect space radiation protection. The shielding capabilities of 39 materials and nine layering configurations are evaluated for deep space travel in terms of whole-body effective dose equivalent (ED). Polymer and composite materials are also evaluated in terms of . It is clear that a “magic” material or layering configuration is not possible; however, polymers and composites should be used instead of metals if they can serve their primary purpose. Polyethylene is shown to be the best feasible material from this material sample. Thermal neutron absorbers 6Li and 10B do not have a significant effect on ED as homogeneous shields or in layering configurations. Alloying of materials such as aluminum for strengthening purposes does not increase ED. Tanking liquid hydrogen within aluminum does significantly reduce ED when compared to aluminum. Ultimately, a space vehicle is a system of systems and radiation protection must be one of them.