ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Su-Jin Jeon, Jae-Sang Lee, Do-Hyun Kim, Seok-Ho Hong, Chun-Sik Lee, Young-Wan Choi
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1075-1085
Regular Technical Paper | doi.org/10.1080/00295450.2019.1697175
Articles are hosted by Taylor and Francis Online.
A homography method to correct position errors generated in the Compton imaging system using a resistive network is presented. The Compton imaging system is composed of a scatterer and an absorber in multichannel arrays for high resolution and can detect gamma rays emitted from radioisotopes. Resistive networks are often used in this system to efficiently reduce the number of channels. However, this can cause position errors, and the spatial resolution deteriorates according to the resistance value of the network, type of detector array, and characteristics of the preamplifier used. Therefore, before tracking the position of the source, it is necessary to correct the position errors of images obtained from the scatterer and absorber. Also, a new correction method should consider the characteristics of the readout circuits based on the resistive network. In this work, the position errors are corrected using homography, which is a coordinate transformation method. To verify the corrections using homography transformation, we modeled the current pulse generated from the detector and designed an automatic channel selection circuit to input each channel of the resistive network. From experiments, we first obtained the positions with distortions according to the setup of readout circuits and corrected these errors by applying the homography transformation method. Consequently, the distortions were significantly corrected, and the error rates of the positions compared with those of the ideal grid were greatly reduced by up to 0.36%.