ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Allan K. Järvine, Alan G. Murchison, Peter G. Keech, Mahesh D. Pandey
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1036-1058
Regular Technical Paper | doi.org/10.1080/00295450.2019.1700730
Articles are hosted by Taylor and Francis Online.
Lifetime predictions of used nuclear fuel containers (UFCs) destined for permanent storage in deep geological repositories are challenged by the uncertainty surrounding the environment and resultant performance of both the containers and the balance of engineered barriers over repository timescales. Much of the work to characterize the response of engineered barriers to postulated evolving environmental conditions and degradation mechanisms is limited to very short-term laboratory tests or at best in situ large-scale experiments spanning less than a few decades. While much is learned from these test programs, the fact remains that long-term performance of many tens of thousands of UFCs across a timescale of 100 000 years or more cannot be estimated with a significant degree of confidence by extrapolating single-point results of short-term experiments. This is particularly true when there is a desire to understand the progression of container failures and the timing of contaminants subsequently released into the geosphere. Lifetime predictions for UFCs require a probabilistic approach to address uncertainty. In the present work, a recently developed probabilistic corrosion model to estimate the life expectancy of copper-coated UFCs destined for a Canadian geological repository is expanded by modeling the impact of latent copper-coating defects and repository temperature on the key container life-limiting mechanism: sulfide-induced corrosion.