ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Hangbok Choi, John Bolin
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 1010-1018
Regular Technical Paper | doi.org/10.1080/00295450.2019.1699008
Articles are hosted by Taylor and Francis Online.
Fuel performance analysis was conducted for silicon carbide (SiC) composite clad uranium carbide (UC) fuel of a 500-MW(thermal) gas-cooled fast reactor, specifically the energy multiplier module (EM2) under normal operation. The analysis consists of two parts: Part I includes a description of design bases and criteria, fuel element design specifications, and material properties and models, while Part II (this paper) includes the fuel modeling approach, computer code, and the fuel design evaluation. In Part II, the FRAPCON-4.0 code was updated to include material properties and models of UC fuel, SiC composite cladding, and helium coolant, and named FRAPCON-4.0GA. The analysis was performed using the hot rod power envelope and burnup history. The results show that the present design of the EM2 fuel element has ample margin to melting owing to the high thermal conductivity of the UC fuel and annular pellet configuration. The operating temperature of the fuel element also minimizes the radiation-induced deformation of the SiC composite cladding. The simulation results show that the hoop stress of the cladding is below its tensile stress limit, i.e., one-third of ultimate tensile stress, while the cladding hoop strain limit is reached at 22.5 year, which is less than its design life of 32 years. However, sensitivity calculations of the swelling rate and design parameters indicate that it is feasible to reduce the cladding hoop strain by accommodating the fuel swelling into the open pore. Considering uncertainties associated with the material properties and models, it is highly recommended to experimentally verify the UC swelling and SiC composite creep, which are critical properties in analyzing the long-life fuel behavior.