ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Amy Hall, Daniel A. Gum, Richard Ferrieri, John Brockman, James E. Bevins
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 962-976
Technical Paper – Special section on the 2019 ANS Student Conference | doi.org/10.1080/00295450.2020.1740561
Articles are hosted by Taylor and Francis Online.
The General Electric (GE®) PETtrace 860 cyclotron at the Missouri University Research Reactor (MURR) facility is used extensively for medical and research radioisotope production. However, no model exists of its performance, and the proton beam’s energy and spatial distribution are unmeasured. Here, an MCNP6 model was developed to improve upon the performance of the cyclotron target systems that are routinely utilized for research and medical radioisotope production. Since the cyclotron beam energy and profile have a significant impact on the efficiency and character of radioisotope production, the MURR cyclotron proton beam energy was measured using high-purity copper stacked foil activation to be 14.6 ± 0.2 MeV, a significant reduction from the stated 16.4 MeV. Phosphor plate imaging was also used to radiographically image the distribution of radioisotope production within the copper foils and characterize the beam spatial and intensity profile. Total target activity was quantified by trapping the 11C on a solid adsorbent and measuring the amount in an ion chamber. Effective target densities were calculated for irradiations conducted with beam currents between 5 and 40 μA. The measured beam and target characteristics were used to develop an MCNP6 model of 11C production. Through use of the model, it was determined that the targets were, at most, 41% efficient as a thick target design resulting in up to 11.80-MeV average protons impinging on the target walls leading to potential contamination from hot ion recoils.