ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Junyong Bae, Jeeyea Ahn, Seung Jun Lee
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 951-961
Technical Paper – Special section on the 2019 ANS Student Conference | doi.org/10.1080/00295450.2019.1693215
Articles are hosted by Taylor and Francis Online.
Human operators always have the possibility to commit human errors, and in safety-critical infrastructures such as a nuclear power plant, human error could cause serious consequences. Since nuclear plant operations involve highly complex and mentally taxing activities, especially in emergency situations, it is important to detect human errors to maintain plant safety. This work proposes a method to predict the future trends of important plant parameters to determine whether a performed action is an error or not. To achieve this prediction, a recursive strategy is adopted that employs an artificial neural network as its prediction model. Two artificial neural networks were selected and compared: multilayer perceptron and long short-term memory (LSTM). Model training was accomplished using emergency operation data from a nuclear power plant simulator. From the comparison results, it was observed that the future trends of plant parameters were quite accurately predicted through the LSTM model. It is expected that the plant parameter prediction function proposed in this work can give useful information for detecting and recovering human errors.