ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Junyong Bae, Jeeyea Ahn, Seung Jun Lee
Nuclear Technology | Volume 206 | Number 7 | July 2020 | Pages 951-961
Technical Paper – Special section on the 2019 ANS Student Conference | doi.org/10.1080/00295450.2019.1693215
Articles are hosted by Taylor and Francis Online.
Human operators always have the possibility to commit human errors, and in safety-critical infrastructures such as a nuclear power plant, human error could cause serious consequences. Since nuclear plant operations involve highly complex and mentally taxing activities, especially in emergency situations, it is important to detect human errors to maintain plant safety. This work proposes a method to predict the future trends of important plant parameters to determine whether a performed action is an error or not. To achieve this prediction, a recursive strategy is adopted that employs an artificial neural network as its prediction model. Two artificial neural networks were selected and compared: multilayer perceptron and long short-term memory (LSTM). Model training was accomplished using emergency operation data from a nuclear power plant simulator. From the comparison results, it was observed that the future trends of plant parameters were quite accurately predicted through the LSTM model. It is expected that the plant parameter prediction function proposed in this work can give useful information for detecting and recovering human errors.