ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Haining Zhou, Volkan Seker, Thomas Downar
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 839-861
Technical Paper | doi.org/10.1080/00295450.2020.1746620
Articles are hosted by Taylor and Francis Online.
The paper presents a self-adaptive feature selection algorithm we developed for solving high-dimensional uncertainty quantification problems. The development of the algorithm was motivated and supported by the benchmarking of the Transient Reactor Test (TREAT) transient test 2857. The generalized polynomial chaos expansion scheme was adopted to decompose the response functions. Our algorithm was applied to select the dominant basis from the candidate polynomial basis in a self-adaptive manner by assigning weights to the polynomial basis and adjusting the weights using the least absolute shrinkage and selection operator regularization–estimated coefficients through iterations. The developed algorithm can recognize the significant basis terms in the polynomial expansion of the response functions and therefore build a sparse polynomial expansion using a limited number of samples. The algorithm was implemented and verified through three different TREAT modeling cases. The testing results demonstrated the general stability and prediction performance of our algorithm and provided useful information about the uncertainty mechanism of the TREAT transient test 2857.