ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Haining Zhou, Volkan Seker, Thomas Downar
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 839-861
Technical Paper | doi.org/10.1080/00295450.2020.1746620
Articles are hosted by Taylor and Francis Online.
The paper presents a self-adaptive feature selection algorithm we developed for solving high-dimensional uncertainty quantification problems. The development of the algorithm was motivated and supported by the benchmarking of the Transient Reactor Test (TREAT) transient test 2857. The generalized polynomial chaos expansion scheme was adopted to decompose the response functions. Our algorithm was applied to select the dominant basis from the candidate polynomial basis in a self-adaptive manner by assigning weights to the polynomial basis and adjusting the weights using the least absolute shrinkage and selection operator regularization–estimated coefficients through iterations. The developed algorithm can recognize the significant basis terms in the polynomial expansion of the response functions and therefore build a sparse polynomial expansion using a limited number of samples. The algorithm was implemented and verified through three different TREAT modeling cases. The testing results demonstrated the general stability and prediction performance of our algorithm and provided useful information about the uncertainty mechanism of the TREAT transient test 2857.