ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
DOE opens funding opportunity for HALEU transport packages
The Department of Energy announced November 19 that up to $16 million is available through a new High-Assay Low-Enrichment Transportation Package funding opportunity to research, develop, and acquire Nuclear Regulatory Commission licensing for transportation of HALEU—using new or modified packages.
Haining Zhou, Volkan Seker, Thomas Downar
Nuclear Technology | Volume 206 | Number 6 | June 2020 | Pages 839-861
Technical Paper | doi.org/10.1080/00295450.2020.1746620
Articles are hosted by Taylor and Francis Online.
The paper presents a self-adaptive feature selection algorithm we developed for solving high-dimensional uncertainty quantification problems. The development of the algorithm was motivated and supported by the benchmarking of the Transient Reactor Test (TREAT) transient test 2857. The generalized polynomial chaos expansion scheme was adopted to decompose the response functions. Our algorithm was applied to select the dominant basis from the candidate polynomial basis in a self-adaptive manner by assigning weights to the polynomial basis and adjusting the weights using the least absolute shrinkage and selection operator regularization–estimated coefficients through iterations. The developed algorithm can recognize the significant basis terms in the polynomial expansion of the response functions and therefore build a sparse polynomial expansion using a limited number of samples. The algorithm was implemented and verified through three different TREAT modeling cases. The testing results demonstrated the general stability and prediction performance of our algorithm and provided useful information about the uncertainty mechanism of the TREAT transient test 2857.