ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Ming Wang, Jinxing Zheng, Yuntao Song, Xianhu Zeng, Ming Li, Wuquan Zhang, Pengyu Wang, Junsong Shen
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 779-790
Technical Paper | doi.org/10.1080/00295450.2019.1670011
Articles are hosted by Taylor and Francis Online.
The superconducting isochronous cyclotron SC200 for proton therapy is under development in Hefei, and the active scanning method has been selected as the beam delivery technology. To reduce energy loss and transverse scattering of the proton beam, a gas chamber in the pencil beam scanning (PBS) nozzle has been designed to shorten the length of the air segment. To determine whether using a helium filling gas or vacuum is the most suitable for the SC200 PBS nozzle, the beam size and the energy loss at the isocenter and the dose distribution in the water phantom are compared using the TOol for PArticle Simulation (TOPAS) code. The results show that using the helium filling gas resulted in scattering and energy loss of the proton beam compared with using vacuum, but these effects were minimal. Considering the disadvantages of the engineering problems of creating a vacuum chamber, helium was selected as the filling gas for the PBS nozzle chamber. Moreover, the following parameters were analyzed and optimized: gas pressure, gas purity, and film thickness of the chamber. When the helium pressure was below 1.1 atm and the air proportion was less than 5%, the beam size at the lowest energy of the proton beam at the isocenter was lower than 8 mm, meeting the clinical requirements.