ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Mohamed A. E. Abdel-Rahman, Mohamed A. E. M. Ali, Sayed A. El-Mongy
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 766-778
Technical Paper | doi.org/10.1080/00295450.2019.1697173
Articles are hosted by Taylor and Francis Online.
This research work aims to investigate the penetrability of electromagnetic gamma rays and fast neutrons and the static performance of newly developed concrete. To achieve this target, seven concrete samples of three different coarse aggregates—dolomite, hematite, iron slag (with five different densities, i.e., 3.23, 3.34, 3.42, 3.10, and 3.03 g/cm3, respectively) with dolomite used as the control specimen—have been synthesized and investigated to determine their mechanical and radiation penetration properties. The mechanical performances were evaluated in terms of tensile and compressive strength, slump measurements, and water permeability. X-ray fluorescence was carried out to determine the chemical composition of the synthesized materials. The materials’ mineralogical constituents were also determined by X-ray diffraction analysis. The radiation transmissioxn characteristics were also checked by using gamma-ray collimated beams of both 60Co and 238Pu/Be neutron source. A stilbene crystal organic scintillator coupled with a fast n/γ pulse shape discriminating spectrometer as well as an NaI(Tl) scintillator gamma spectrometer were used to measure the radiation penetrated through the concrete samples. The fast neutron macroscopic cross section and total gamma-ray linear attenuation were derived for the developed mixes. The results obtained show that iron slag concrete of density 3.10 ton/m3 has superior characteristics against the transmission of gamma rays and fast neutrons and distinguished resistance withstanding mechanical pressure and loads.