ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
J. Vande Pitte, J. Wagemans, A. Gusarov, I. Uytdenhouwen, C. Detavernier, J. Lauwaert
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 758-765
Technical Paper | doi.org/10.1080/00295450.2019.1697172
Articles are hosted by Taylor and Francis Online.
Neutron transmutation doping is used to create high-quality silicon with a specific target resistivity. By implementing neutron absorbers, it is possible to obtain a broader range of postirradiation resistivities. To develop this method, the influence of neutron absorbers on the reactor spectrum in Belgian Reactor 1 was numerically simulated and experimentally verified. A comparison between the modeled reactor spectrum and the spectrum obtained through activation foils showed good agreement. These data were used to calculate the resistivity of silicon under cadmium and hafnium foils with different thicknesses after neutron irradiation. Experimental four-point probe measurements confirmed the calculated resistivities. Hence, the research shows that tailoring the reactor spectrum using neutron absorbers allows for a large range of final resistivities or doping concentrations in silicon during a single irradiation cycle.