ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Anh-Tuan Cao, Thanh-Tuan Tran, Thi-Hong-Xuyen Nguyen, Dookie Kim
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 743-757
Technical Paper | doi.org/10.1080/00295450.2019.1696643
Articles are hosted by Taylor and Francis Online.
This paper proposes a simplified approach for assessing and predicting the seismic risks for electrical cabinets in nuclear power plants (NPPs). The method is a combination of fragility analysis and cumulative absolute velocity (CAV) analysis. First, the high confidence of low probability of failure points from the fragility curves are defined to determine the capacity of the cabinet. Then, the potential damage to the electrical cabinet at different locations in Korea is considered via probabilistic seismic maps. Based on the capacity, a seismic risk assessment is conducted to observe the operant condition or predict the potential issues of the electrical cabinet under seismic effects.
An electrical cabinet is used as a setting for numerical simulation. The finite element model is validated against the experimental results and calibrated by using response surface methodology. Numerical results show that the operant condition of the electrical cabinet can be disturbed by probable earthquakes that have CAV values greater than the of 0.27 g‧s. This method is one way that NPP operators can follow to obtain cabinet safety regulations.