ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Anh-Tuan Cao, Thanh-Tuan Tran, Thi-Hong-Xuyen Nguyen, Dookie Kim
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 743-757
Technical Paper | doi.org/10.1080/00295450.2019.1696643
Articles are hosted by Taylor and Francis Online.
This paper proposes a simplified approach for assessing and predicting the seismic risks for electrical cabinets in nuclear power plants (NPPs). The method is a combination of fragility analysis and cumulative absolute velocity (CAV) analysis. First, the high confidence of low probability of failure points from the fragility curves are defined to determine the capacity of the cabinet. Then, the potential damage to the electrical cabinet at different locations in Korea is considered via probabilistic seismic maps. Based on the capacity, a seismic risk assessment is conducted to observe the operant condition or predict the potential issues of the electrical cabinet under seismic effects.
An electrical cabinet is used as a setting for numerical simulation. The finite element model is validated against the experimental results and calibrated by using response surface methodology. Numerical results show that the operant condition of the electrical cabinet can be disturbed by probable earthquakes that have CAV values greater than the of 0.27 g‧s. This method is one way that NPP operators can follow to obtain cabinet safety regulations.