ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Anh-Tuan Cao, Thanh-Tuan Tran, Thi-Hong-Xuyen Nguyen, Dookie Kim
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 743-757
Technical Paper | doi.org/10.1080/00295450.2019.1696643
Articles are hosted by Taylor and Francis Online.
This paper proposes a simplified approach for assessing and predicting the seismic risks for electrical cabinets in nuclear power plants (NPPs). The method is a combination of fragility analysis and cumulative absolute velocity (CAV) analysis. First, the high confidence of low probability of failure points from the fragility curves are defined to determine the capacity of the cabinet. Then, the potential damage to the electrical cabinet at different locations in Korea is considered via probabilistic seismic maps. Based on the capacity, a seismic risk assessment is conducted to observe the operant condition or predict the potential issues of the electrical cabinet under seismic effects.
An electrical cabinet is used as a setting for numerical simulation. The finite element model is validated against the experimental results and calibrated by using response surface methodology. Numerical results show that the operant condition of the electrical cabinet can be disturbed by probable earthquakes that have CAV values greater than the of 0.27 g‧s. This method is one way that NPP operators can follow to obtain cabinet safety regulations.