ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Jiankai Yu, Hyunsuk Lee, Hanjoo Kim, Peng Zhang, Deokjung Lee
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 728-742
Technical Paper | doi.org/10.1080/00295450.2019.1677107
Articles are hosted by Taylor and Francis Online.
The coupled neutronics–thermal-hydraulic simulation of the Benchmark for Evaluation and Validation of Reactor Simulations (BEAVRS) Cycle 1 depletion has been performed by the Monte Carlo–based multiphysics coupling code system MCS/CTF. MCS/CTF is a cyclewise pi-card iteration-based inner-coupling code system that couples the subchannel thermal-hydraulic code CTF as a thermal-hydraulic solver in the Monte Carlo neutron transport code MCS. MCS has been developed by the Computational Reactor Physics and Experiment Lab group at the Ulsan National Institute of Science and Technology for the full-core analysis of large-scale commercial light water reactors with high fidelity at the engineering level. With the high-fidelity performance of MCS, the quarter-core pinwise depletion simulation for the BEAVRS Cycle 1 benchmark has been conducted with thermal-hydraulic feedback including fuel temperature, coolant temperature, and coolant density. Moreover, the MCS internal one-dimensional thermal-hydraulic solver TH1D (MCS/TH1D) has been utilized as the reference. On one hand, the simulated results of the criticality boron concentration and axially integrated assemblywise detector signals were compared with measured data. On the other hand, the comparisons of power, fuel temperature, coolant temperature, and density are also presented in this paper.