ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
Berkan Çetinkaya, Hüseyin Tel, Ahmet Yaylı
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 717-727
Technical Paper | doi.org/10.1080/00295450.2019.1686939
Articles are hosted by Taylor and Francis Online.
(ThxCe1-x)O2 microspheres (x = 0.50, 0.75, and 0.95) prepared by sol-gel microsphere technique were compacted to pellets. The sintering kinetics, diffusion mechanism, and activation energy of the (ThxCe1-x)O2 pellets were investigated by dilatometry for 1100°C, 1200°C, and 1300°C. The rate controlling sintering method, one of the most sensitive methods, was chosen to investigate the sintering kinetics. The pellets were heated with a rate of 10°C/min and were held for 10 h at the above mentioned temperatures under isothermal conditions.
The activation energies for the (Th0.50Ce0.50)O2, (Th0.75Ce0.25)O2, and (Th0.95Ce0.05)O2 pellets were calculated as 305, 315, and 419 kJ·mol−1, respectively. In the experiments, green densities of the mixed-oxide pellets were determined as 45% to 47% of the theoretical density for all of the studied ratios. Sintering densities reached up to 94% of theoretical density after sintering at 1300°C. Scanning electron microscopy images of the pellets were taken.