ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Pratik Joshi, Micah Tillman, Nilesh Kumar, Korukonda Murty, Nedim Cinbiz
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 706-716
Technical Paper | doi.org/10.1080/00295450.2019.1674581
Articles are hosted by Taylor and Francis Online.
Zirconium-niobium (Zr-Nb) alloys are used as cladding materials to encapsulate radioactive fuel in nuclear reactors. They possess excellent corrosion resistance at high temperatures making it possible to achieve high fuel burnup, directly increasing the thermal efficiency of the reactor. While they are commonly used in recrystallized (Rx) form in boiling water reactors, there is a need to understand the effect of cold work and stress relief (CWSR) on the biaxial creep characteristics of these materials due to their use in pressurized water reactors. In this study, the biaxial creep behaviors of as-received Zr-Nb alloys, HANA and Zirlo®, have been investigated at 500°C and 400°C, respectively, using internally pressurized tubing superimposed with axial load under varied hoop σθ to axial σz stress ratios of 0 to 2 while monitoring both the axial and hoop strains using a linear variable displacement transformer and a laser telemetric extensometer, respectively. The crystallographic textures and creep loci of these as-received Zr-Nb alloys have been evaluated to correlate with the previous studies on recrystallized HANA4 and CWSR Zircaloy-4. The creep locus of HANA4 was found to be unaffected by initial state (CWSR or Rx) and showed close correspondence to planar isotropy while the creep locus of CWSR Zirlo exhibited more resistance to axial deformation than diametrical as per CWSR Zircaloy-4 reported earlier. These differences are shown to arise from grain-shape anisotropy of the CWSR Zirlo and Zircaloy-4. The simulated creep loci using crystallite-orientation distribution functions in conjunction with prism slip models showed excellent agreement with experimental results.