ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Christopher Wallace, Curtis McEwan, Graeme West, William Aylward, Stephen McArthur
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 697-705
Technical Paper | doi.org/10.1080/00295450.2019.1697174
Articles are hosted by Taylor and Francis Online.
This paper summarizes a novel approach to improved localization of fuel defects by fusing existing data sources and methods within a neural network model to make accurate and quantifiable identification earlier than existing processes. The approach is demonstrated through application to a CANDU reactor and utilizes a small, manually labeled set of delayed neutron data augmented with neutronic power data to train a neural network to estimate the probability of a fuel channel containing a defect. Results demonstrate that the model is often capable of identifying likely defects earlier than existing methods and could support earlier decision making to enable a reduction in cost and time required to localize defects. The approach described has broader application to other reactor types given the general difficulty of detecting fuel defects via fission product measurement and the large quantities of ancillary parameters normally already recorded that can be leveraged using machine learning techniques.