ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Christopher Wallace, Curtis McEwan, Graeme West, William Aylward, Stephen McArthur
Nuclear Technology | Volume 206 | Number 5 | May 2020 | Pages 697-705
Technical Paper | doi.org/10.1080/00295450.2019.1697174
Articles are hosted by Taylor and Francis Online.
This paper summarizes a novel approach to improved localization of fuel defects by fusing existing data sources and methods within a neural network model to make accurate and quantifiable identification earlier than existing processes. The approach is demonstrated through application to a CANDU reactor and utilizes a small, manually labeled set of delayed neutron data augmented with neutronic power data to train a neural network to estimate the probability of a fuel channel containing a defect. Results demonstrate that the model is often capable of identifying likely defects earlier than existing methods and could support earlier decision making to enable a reduction in cost and time required to localize defects. The approach described has broader application to other reactor types given the general difficulty of detecting fuel defects via fission product measurement and the large quantities of ancillary parameters normally already recorded that can be leveraged using machine learning techniques.