ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Hunter Andrews, Supathorn Phongikaroon
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 651-661
Technical Note | doi.org/10.1080/00295450.2019.1670009
Articles are hosted by Taylor and Francis Online.
Cyclic voltammetry (CV) was used to study SmCl3 at concentrations of 0.42 to 8.99 wt% in molten eutectic LiCl-KCl (44.2:55.8 wt%) at 773 K. For each sample, CV was repeated at different electrode surface areas to measure the peak current density. By analyzing the measured peak current density and concentration relationship with the Randles-Sevcik equation, the Sm(III) diffusivity for each sample was calculated. These diffusion coefficients ranged from 0.934 × 10−5 to 1.572 × 10−5 cm2‧s−1, showing no noticeable trend with a change in concentration. The samples were then divided into two groups of five. The first group was used to develop a calibration model for concentration prediction, while the second group was used to test and validate the model. The first model was based on the relationship between current density and concentration. This model had a very low limit of detection of 0.14 wt% and very low error as evaluated by the root-mean-square error of calibration of 0.108 wt%. The second model was a multivariate approach utilizing the current density values and laser-induced breakdown spectroscopy (LIBS) intensities as regressors; however, the introduction of LIBS data showed an increase in the model’s prediction error when compared to the first model. The electrode withdrawal method proved to be a preferable option due to a substantial increase in precision.