ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Hunter Andrews, Supathorn Phongikaroon
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 651-661
Technical Note | doi.org/10.1080/00295450.2019.1670009
Articles are hosted by Taylor and Francis Online.
Cyclic voltammetry (CV) was used to study SmCl3 at concentrations of 0.42 to 8.99 wt% in molten eutectic LiCl-KCl (44.2:55.8 wt%) at 773 K. For each sample, CV was repeated at different electrode surface areas to measure the peak current density. By analyzing the measured peak current density and concentration relationship with the Randles-Sevcik equation, the Sm(III) diffusivity for each sample was calculated. These diffusion coefficients ranged from 0.934 × 10−5 to 1.572 × 10−5 cm2‧s−1, showing no noticeable trend with a change in concentration. The samples were then divided into two groups of five. The first group was used to develop a calibration model for concentration prediction, while the second group was used to test and validate the model. The first model was based on the relationship between current density and concentration. This model had a very low limit of detection of 0.14 wt% and very low error as evaluated by the root-mean-square error of calibration of 0.108 wt%. The second model was a multivariate approach utilizing the current density values and laser-induced breakdown spectroscopy (LIBS) intensities as regressors; however, the introduction of LIBS data showed an increase in the model’s prediction error when compared to the first model. The electrode withdrawal method proved to be a preferable option due to a substantial increase in precision.