ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
John Pevey, Ondřej Chvála, Sarah Davis, Vladimir Sobes, J. Wes Hines
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 609-619
Technical Paper | doi.org/10.1080/00295450.2019.1664198
Articles are hosted by Taylor and Francis Online.
This paper discusses the design of a fast spectrum subcritical assembly utilizing a genetic algorithm. The facility proposed in this paper would be a flexible platform for expanding the knowledge of fast spectrum neutron cross sections needed for next-generation fast reactor designs. The Fast Neutron Source (FNS) would be composed of both a fast and a thermal region to minimize the amount of uranium fuel and reduce overall material costs while maintaining flexibility for many potential fast neutron cross-section experiments. The FNS would be customizable and interchangeable down to 1 × 1 × 10-in.-volume sections. An optimal core design requires the adjustment of many factors to both reduce the cost and accurately reproduce the spectra of interest during an experiment. A genetic algorithm was developed to optimize this complex design problem while reducing design time and expert judgment. The genetic algorithm was able to vary multiple design factors in an unattended fashion from a random initial population of designs and arrived at a design comparable to an expertly designed assembly.