ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Wilmer A. Coloma, Antonella L. Costa, Claubia Pereira, Clarysson A. M. da Silva
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 554-564
Technical Paper | doi.org/10.1080/00295450.2019.1662668
Articles are hosted by Taylor and Francis Online.
Analysis of the power time series evolution is used to investigate a stable or unstable process after the disturbance in a light water reactor of the boiling water reactor (BWR) type. Several different methodologies are currently used and the uncertainties of the various approaches are in some cases very different. In this work, the time series model known as the Autoregressive Moving Average model was used to calculate the decay ratio (DR), and the natural frequency (NF) due to power oscillations in a BWR. The method consists of locating the appropriate dominant pole of the transfer function. The autoregressive methods are quite often used to study the stability of BWR reactors. In this work the Box-Cox transformation is implemented to stabilize the variances of the power signals in order to maintain the linear assumptions that the calculation of DR and NF needs; that is, to correct biases in the distribution of errors to stabilize the variance and mainly so that the signal approaches a linear behavior. The MATLAB code was used for this purpose. This work also presents a nonlinear analysis of the power series, determining the values of the largest Lyapunov exponents with Rosenstein’s algorithm in order to analyze the stability of the system. The results of the DR and NF calculated by the used methodology are very close to the values obtained in the benchmark.