ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Thiago D. Roberto, Celso M. F. Lapa, Antonio C. M. Alvim
Nuclear Technology | Volume 206 | Number 4 | April 2020 | Pages 527-543
Technical Paper | doi.org/10.1080/00295450.2019.1666603
Articles are hosted by Taylor and Francis Online.
Reactor cavity cooling systems (RCCSs) ensure the physical integrity of the containment structures in a high-temperature gas-cooled test reactor (HTR-10) and a high-temperature gas-cooled pebble-bed module reactor (HTR-PM). HTR-10 is a graphite-moderated and helium-cooled pebble-bed reactor prototype designed to demonstrate the technical feasibility and safety of the pebble-bed reactor design concept under normal and accident conditions. This prototype served as a proof of concept for the HTR-PM that shares several design similarities with the HTR-10, including a reactor cavity that requires cooling owing to the high core outlet temperature. The RCCS conceived in the design of both the reactors increases the inherent safety of the system by dissipating heat through passive heat removal processes. This paper proposes an RCCS model for system-scale analysis. The conventional scale method is adopted to determine the conditions necessary for complete similarity between two RCCSs in the steady-state flow regime. In addition, a scaling evaluation between the RCCSs of both the HTR-10 (model) and HTR-PM (prototype) is performed using the proposed RCCS model based on data from two benchmark problems: pressurized and depressurized loss of forced cooling. This evaluation shows that the RCCSs of the HTR-10 (model) and HTR-PM (prototype) show similarity to a specific operational condition in each of the problems analyzed.