ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Seok Yoon, Jun-Seo Jeon, Seeun Chang, Deuk-Hwan Lee, Seung-Rae Lee, Geon-Young Kim
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 514-525
Technical Note | doi.org/10.1080/00295450.2019.1632093
Articles are hosted by Taylor and Francis Online.
A geological repository has been considered as one of the best options for the disposal of high-level radioactive waste (HLW), with the concepts of an engineered barrier system (EBS) and a natural barrier system. A compacted bentonite buffer is the most crucial component of the EBS. Because groundwater penetrates the compacted bentonite buffer, it is essential to investigate a water-retention curve (WRC) of the compacted bentonite buffer to evaluate the overall safety performance of the EBS because the WRC of the compacted bentonite buffer can affect the thermal-hydraulic–mechanical behavior of every component of the EBS. Therefore, this technical note reports on laboratory experiments conducted to analyze the WRC for a Korean Ca-type compacted bentonite considering dry density, confined or unconfined condition, and drying or wetting path. Models by Fredlund and Xing and by van Genuchten had the best fit with the experimental data. The results revealed higher water content with smaller dry density and in an unconfined condition and higher total suction during the drying path. Furthermore, the air-entry values (AEVs) and fitting parameters of the van Genuchten model were compared with other Ca-type bentonites produced in Europe. A smaller AEV showed lower expansibility since the AEV is affected in the low-suction range and expansibility.