ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
J. Wang, H. Yeom, P. Humrickhouse, K. Sridharan, M. Corradini
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 467-477
Technical Paper | doi.org/10.1080/00295450.2019.1649566
Articles are hosted by Taylor and Francis Online.
Since the accident at Fukushima, one major goal of reactor safety research has been the development of accident tolerant technologies that can mitigate or delay fuel degradation during a beyond-design-basis accident. One major effort has been focused on the development of coatings for light water reactor fuel cladding. Chromium-coated zirconium-alloy clad is one of the leading options. In this work, the MELCOR systems code (version 1.8.6 User-Defined Generalized Coating) is used to evaluate the performance of Cr-coated Zr-alloy clad as compared to Zr-alloy clad and APMT FeCrAl-coated Zr-alloy clad for a pressurized water reactor (i.e., Surry) for a station blackout (SBO) accident scenario. Our focus is primarily on the accident progression behavior depending on oxidation kinetics and the assumed failure criterion for the coated cladding material. Our simulation and comparison indicate that the presence of the coating material can significantly reduce the initial rate of hydrogen generation and delay the time when hydrogen generation becomes significant. This decrease in the rate of oxidation and delay in timing can provide additional coping time for compensatory operator actions. We also note that the effect of extended auxiliary feedwater system operation (long-term SBO) can increase this additional coping time in combination with Cr-coated Zr-alloy, but it is limited by other primary system failures (e.g., hot-leg creep rupture) that will occur driven by core decay heat and independent of coated cladding effects. Finally, we observe that while the initial suppression of hydrogen generation for Cr-coated Zr-alloy clad compared to Zr-alloy is notable, the overall amount of hydrogen produced is similar since hydrogen can also be produced through competing oxidation of stainless steel components during the accident progression. Our future work is focused on the uncertainty analysis of the oxidation rate data, coating failure criteria, and severe accident modeling limitations in order to better quantify accident tolerant fuel clad benefits.