ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Toshiya Takaki, Michio Murase, Koji Nishida, Raito Goda, Takeyuki Shimamura, Akio Tomiyama
Nuclear Technology | Volume 206 | Number 3 | March 2020 | Pages 389-400
Technical Paper | doi.org/10.1080/00295450.2019.1656521
Articles are hosted by Taylor and Francis Online.
In our previous study, we measured the void fraction α, pressure gradient dP/dz, and countercurrent flow limitation in a vertical circular pipe (diameter D = 20 mm) under flooding conditions at the square top end and working fluids of air and water to obtain the wall friction factor fw and the interfacial friction factor fi based on the annular flow model. The thickness of the falling liquid film δ obtained from the measured α was relatively well expressed by the correlation for the free-falling film, and the obtained fw was well expressed by the Fanning friction factor f for a circular pipe. Measurements of α in vertical pipes under flooding conditions are few. In this study, therefore, we evaluated α and δ from the measured dP/dz under flooding at the square top end reported by Bharathan et al. with D = 50.8 mm and air-water and by Ilyukhin et al. with D = 20 mm and working fluids of steam and water at pressures of P = 0.6 to 4.1 MPa. As a result, we found that δ obtained from the measured dP/dz and the correlation of fw = f were well correlated in terms of the liquid Reynolds number ReL. The obtained δ was well expressed by the Nusselt’s correlation for the free-falling film in the region of laminar flows, but the obtained δ was larger than the Feind’s correlation for the free-falling film in the region of turbulent flows due to the interfacial friction. We also discussed effects of the diameter and fluid properties on the interfacial friction factor fi.