ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Corporate powerhouses join pledge to triple nuclear energy by 2050
Following in the steps of an international push to expand nuclear power capacity, a group of powerhouse corporations signed and announced a pledge today to support the goal of at least tripling global nuclear capacity by 2050.
Guanyi Wang, Qingzi Zhu, Mamoru Ishii
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 347-357
Technical Paper | doi.org/10.1080/00295450.2019.1626175
Articles are hosted by Taylor and Francis Online.
As a critical closure equation to the two-fluid model and an important tool to characterize the two-phase-flow interfacial transport, the interfacial area transport equation (IATE) was formulated by taking various physical mechanisms causing interfacial area change into account. To fulfill the dynamic prediction advantage of IATE and further replace the flow regime–based constitutive relations, the IATE model should be validated by transition data to ensure model reliability and robustness. Air-water experiments are performed in bubbly-to-slug transition flows in a 200 × 10-mm narrow rectangular duct. Four-sensor conductivity probes are used to measure the local void fraction, interfacial area concentration (IAC), and bubble velocity at three axial locations. The void fraction distribution changes significantly with the flow developing. Flow conditions with a similar area-averaged void fraction but different superficial mixture velocities are compared, and it is found that the superficial mixture velocity significantly affects the IAC. In addition, the two-group IATE model for narrow rectangular channel is evaluated using the collected data. The average relative error for the total IAC prediction is 11.4%, but the group II IAC is overestimated for most flow conditions.