ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Nicholas R. Brown, David J. Diamond, Stephen Bajorek, Richard Denning
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 322-338
Technical Paper | doi.org/10.1080/00295450.2019.1590077
Articles are hosted by Taylor and Francis Online.
We discuss liquid-fuel molten salt (cooled) reactors (MSRs); how they will operate under normal, transient, and accident conditions; and the results of an expert elicitation to determine the corresponding thermal-hydraulic and neutronic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy, and industry to develop or identify modeling functionalities and tools required to carry out confirmatory and licensing analyses that examine the validity and accuracy of an applicant’s calculations and help determine the margin of safety in plant design. The NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the state of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel comprising a group of subject matter experts met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures of merit (FoMs) (e.g., salt temperature, velocity, and composition). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs, with an emphasis on the thermal-hydraulic takeaways.
It was concluded that compared to light water reactors, the lack of high-pressure operation, energetic break flow, depressurization, and quench front tracking may simplify some aspects of an MSR analysis. However, MSRs have new phenomena both for a license applicant and NRC confirmatory analysis. There is a need for enhanced understanding of physical properties for MSRs that encompass several individual thermophysical properties, including thermal conductivity, viscosity, specific heat, density, optical properties, thermodynamic properties, volatilities, solubilities, etc. Salt composition is closely linked to both these properties and the neutronics of the system. Additionally, the large number of MSR concepts and system designs means that there is wide variation in the potential modeling needs for these systems.