ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Japanese researchers test detection devices at West Valley
Two research scientists from Japan’s Kyoto University and Kochi University of Technology visited the West Valley Demonstration Project in western New York state earlier this fall to test their novel radiation detectors, the Department of Energy’s Office of Environmental Management announced on November 19.
Sunming Qin, Benedikt Krohn, Victor Petrov, Annalisa Manera
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 307-321
Technical Paper | doi.org/10.1080/00295450.2019.1591155
Articles are hosted by Taylor and Francis Online.
Nonintrusive optical methods of flow visualization, like particle image velocity (PIV) and planar laser-induced fluorescence (PLIF), have been widely applied to obtain instantaneous velocity and concentration fields with high spatial and temporal resolutions. When there are density variances involved in the flow, however, the optical measurements become challenging. To prevent the laser sheet which is used to illuminate the flow from getting deflected due to the changes of densities, it is essential to match the refractive indices for the solutions used in the experiments. A methodology based on the mixing behavior of a ternary-component system is applied in this work and an index-matched density ratio of 3.16% has been obtained. To form a nonconfined round free jet, an experimental facility was designed with a jet nozzle diameter of 2 mm located at the bottom of a cubic tank with 30-cm side length. The jet flow is established by a servo-engine-driven piston to eliminate possible fluctuations introduced by the motor. A high-fidelity synchronized PIV/PLIF system was utilized to measure the velocity and concentration fields in the self-similar regions for the jet flow with density differences as well as for the reference cases in uniform environments. Results are analyzed and compared in terms of turbulent statistics. Important for validations of computational fluid dynamics simulations, turbulent eddy viscosity as well as turbulent diffusivity are computed according to the Boussinesq hypothesis and the standard gradient-diffusion hypothesis. Scalar transport has been characterized for the jet self-similar region compared with previous literature using pipe-shaped jet nozzle in terms of the decay constants, jet spreading rates, and virtual origins.