ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
About Studsvik Scandpower
Studsvik Scandpower (SSP) is the leading global provider of vendor-independent, state-of-the-art nuclear fuel management software and world-class engineering services. SSP offers a full suite of software product offerings, training, and engineering services, to support operating utilities, fuel vendors, safety authorities, and research organizations around the world.
A. M. Tentner, A. Karahan, S. H. Kang
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 242-254
Technical Paper | doi.org/10.1080/00295450.2019.1636589
Articles are hosted by Taylor and Francis Online.
The SAS4A safety analysis code, originally developed for the analysis of postulated severe accidents in oxide fuel sodium-cooled fast reactors (SFRs), has been significantly extended to allow the mechanistic analysis of severe accidents in metallic fuel SFRs. The SAS4A metallic fuel models simulate the metallic fuel thermomechanical and chemical behavior and track the evolution and relocation of multiple fuel and cladding components during the pretransient irradiation and during the postulated accident, allowing an accurate description of the changes in the local fuel composition. The local fuel composition determines the fuel thermophysical properties, such as freezing and melting temperatures, which in turn affect the fuel relocation behavior and ultimately the core reactivity and power history during the postulated accidents. Models describing the fuel-cladding interaction and eutectic formation, the effects of the in-pin sodium on the in-pin fuel relocation, and the postfailure reentry of the molten fuel and fission gas from the pin plenum have also been added. This paper provides an overview of the SAS4A key metallic fuel models emphasizing the postfailure metallic fuel relocation models included in the LEVITATE-M module of SAS4A. The capabilities of the SAS4A metallic fuel models are illustrated through an extended SAS4A analysis of a postulated unprotected loss-of-flow and transient-overpower accident in the metallic fuel prototype Gen-IV sodium fast reactor. The results show that the maximum relative power reached during the postulated accident is 1.19 P0. The favorable characteristics of the metallic fuel cause a significant decrease in net reactivity and relative power due to prefailure in-pin fuel relocation. Negative net reactivity values persist after cladding failure, and the postfailure fuel relocation events occur at low and decreasing power levels.