ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
T. Q. Hua, S. J. Lee, J. Liao, A. Moisseytsev, P. Ferroni, A. Karahan, C. Y. Paik, A. M. Tentner, T. Sofu
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 206-217
Technical Paper | doi.org/10.1080/00295450.2019.1598715
Articles are hosted by Taylor and Francis Online.
Fauske & Associates, LLC (FAI), Argonne National Laboratory (ANL), and Westinghouse Electric Company are collaborating within the program “Development of an Integrated Mechanistic Source Term Assessment Capability for Lead- and Sodium-Cooled Fast Reactors.” This program, partially funded by the U.S. Department of Energy through the Gateway for Accelerated Innovation in Nuclear initiative, aims at developing a computational framework for predicting radionuclide release from a broad spectrum of accidents that can be postulated to occur at liquid metal cooled reactor (LMR) facilities. Specifically, the program couples the transient and severe accident analysis capability of the SAS4A/SASSYS-1 code developed by ANL with the radionuclide transport analysis capability of the Facility Flow, Aerosol, Thermal, and Explosion (FATE) code developed by FAI. The testing of both the individual codes and of the coupled system is performed on a generic lead cooled fast reactor (LFR) design that is intended to capture the key differences between the LFR and the sodium fast reactor (SFR), around which the SAS4A/SASSYS-1 code has historically been developed and from which the coupled code inherits some features requiring modification before application to LFR systems. By means of this approach, a computational framework applicable to both LFR and SFR systems will be obtained that will assist LMR developers in performing a realistic, scenario-dependent mechanistic source term (MST) assessment expected not only to strengthen their safety case but also to support easier siting and claims on reduced emergency planning zone requirements. This paper discusses the work being performed to adapt the SAS4A/SASSYS-1 and FATE codes to LFR technology; the code coupling method implemented; and some of the results of the LFR test case, with the latter aimed at demonstrating the progress made toward the development of the MST analysis capability that is ultimately targeted.