ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Iztok Tiselj, Cedric Flageul, Jure Oder
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 164-178
Critical Review | doi.org/10.1080/00295450.2019.1614381
Articles are hosted by Taylor and Francis Online.
The critical review discusses the most accurate methods for description of turbulent flows: the computationally very expensive direct numerical simulation (DNS) and slightly less accurate and slightly less expensive large eddy simulation (LES) methods. Both methods have found their way into nuclear thermal hydraulics as tools for studies of the fundamental mechanisms of turbulence and turbulent heat transfer. In the first section of this critical review, both methods are briefly introduced in parallel with the basic properties of the turbulent flows. The focus is on the DNS method, the so-called quasi-DNS approach, and the coarsest turbulence modeling approach discussed in this work, which is still on the very small-scale, wall-resolved LES. Other, coarser turbulence modeling approaches (such as wall-modeled LES, Reynolds Averaged Navier-Stokes (RANS)/LES hybrids, or RANS) are beyond the scope of the present work. Section II answers the question: “How do the DNS and LES methods work?” A short discussion of the computational requirements, numerical approaches, and computational tools is included. Section III is about the interpretation of the DNS and LES results and statistical uncertainties. Sections IV and V give some examples of the DNS and wall-resolved LES results relevant for nuclear thermal hydraulics. The last section lists the conclusions and some of the challenges that might be tackled with the most accurate techniques like DNS and LES.