ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jun Fang, Joseph J. Cambareri, Mengnan Li, Nadish Saini, Igor A. Bolotnov
Nuclear Technology | Volume 206 | Number 2 | February 2020 | Pages 133-149
Critical Review | doi.org/10.1080/00295450.2019.1620056
Articles are hosted by Taylor and Francis Online.
This critical review paper outlines the recent progress in high-resolution numerical simulations of two-phase coolant flow in light water reactor–relevant geometries by resolving the water-vapor interface. Rapid development of capabilities in high-performance computing is creating exciting opportunities to study complex reactor thermal-hydraulic phenomena. Today’s advances in thermal-hydraulic analysis and interface-resolved simulations will help pave the way to the next level of understanding of two-phase flow behavior in complex geometries. This paper consists of two major parts: (1) a brief review of direct numerical simulation and interface tracking simulation and (2) several opportunities in the near future to apply cutting-edge simulation and analysis capabilities to address the nuclear-related multiphase flow challenges. The first part will discuss typical computational methods used for the simulations and provide some examples of the past work as well as computational cost estimates and affordability of such simulations for research and industrial applications. In the second part specific application examples are discussed, from adiabatic bubbly flow simulations in pressurized water reactor subchannel geometry to the modeling of nucleate boiling. The uniqueness of this study lies in the specific focus on applications with nuclear engineering interest as well as new generation modeling and analysis methodologies. Together with the ever-growing computing power, the related large-scale two-phase flow simulations will become indispensable for the improved scientific understanding of complex two-phase flow phenomena in nuclear reactors under normal operation and postulated accident conditions.