ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Yeni Li, Elisa Bertino, Hany S. Abdel-Khalik
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 82-93
Technical Paper | doi.org/10.1080/00295450.2019.1626170
Articles are hosted by Taylor and Francis Online.
Model-based defenses have been promoted over the past decade as essential defenses against intrusion and data deception attacks into the control network used to digitally regulate the operation of critical industrial systems such as nuclear reactors. The idea is that physics-based models could differentiate between genuine, i.e., unaltered by adversaries, and malicious network engineering data, e.g., flowrates, temperatures, etc. Machine learning techniques have also been proposed to further improve the differentiating power of model-based defenses by constantly monitoring the engineering data for any possible deviations that are not consistent with the physics. While this is a sound premise, critical systems, such as nuclear reactors, chemical plants, oil and gas plants, etc., share a common disadvantage: almost any information about them can be obtained by determined adversaries, such as state-sponsored attackers. Thus, one must question whether model-based defenses would be resilient under these extreme adversarial conditions. This paper represents a first step toward answering this question. Specifically, we introduce self-learning techniques, including both pure data-driven, e.g., deep neural networks, and physics-based techniques able to predict dynamic behavior for a nuclear reactor model. The results indicate that if attackers are technically capable, they can learn very accurate models for reactor behavior, which raises concerns about the effectiveness of model-based defenses.