ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
Yuan Zhou, Bing Chen, Hongyu He, Bo Li, Xinlin Wang
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 32-39
Technical Paper | doi.org/10.1080/00295450.2019.1613850
Articles are hosted by Taylor and Francis Online.
With large-scale molecular dynamics, we investigate displacement cascades in monocrystalline silicon with regard to the effects of temperature, strain, and primary knock-on atom energy on defect generation and evolution. With temperature increasing, both the thermal spike region and the peak defect count increase, while the effect of temperature on the surviving defect number is negligible. Nevertheless, higher temperature shows negative effect on clustering of vacancy. The effects of uniaxial strain on defect production and clustering is negligible, while its hydrostatic counterpart is evident. With the increment of hydrostatic strain, both the peak and surviving defect count increase (decrease) under tensile (compressive) hydrostatic loading. Meantime, tensile hydrostatic strain will promote defect clustering. More defects and larger defect clusters are produced at higher energy. Otherwise, interstitials are hard to form clusters under different conditions.