ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Let it RAIN: A new approach to radiation communication
Despite its significant benefits, the public perception of radiation is generally negative due to its inherent nature: it is ubiquitous yet cannot be seen, heard, smelled, or touched—as if it were a ghost roaming around uncensored. The public is frightened of this seemingly creepy phantom they cannot detect with their senses. This unfounded fear has hampered the progress of the nuclear industry and radiation professions.
Dawn E. Janney, Steven L. Hayes, Cynthia A. Adkins
Nuclear Technology | Volume 206 | Number 1 | January 2020 | Pages 1-22
Critical Review | doi.org/10.1080/00295450.2019.1623617
Articles are hosted by Taylor and Francis Online.
Although U-Pu-Zr alloys have been investigated for more than 60 years, relatively little experimental information is available, and many of the original values are in government reports that appeared more than 40 years ago. Information about the technologically important alloy U-20Pu-10Zr (weight percent) is even more limited. Since U-Pu-Zr alloys are difficult materials to study experimentally, it is therefore important to understand what results have already been obtained, how reliable they are, and where they were reported.
This critical review provides a summary and critical assessment of the available experimental measurements of thermal and mechanical properties of U-Pu-Zr alloys. Knowledge of these properties is crucial for understanding and modeling fuel constituent redistribution, fuel swelling and creep, fission gas release under normal reactor operations, and melting or formation of liquid phases under reactor transient scenarios.
This critical review builds on a previous review that assessed experimental data about phases and phase diagrams in U-Pu-Zr alloys. Both reviews are intended as resources for fuel designers and modelers and as guides for prioritizing future experimental work.