ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A. Labarile, C. Mesado, R. Miró, G. Verdú
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1675-1684
Technical Paper | doi.org/10.1080/00295450.2019.1631051
Articles are hosted by Taylor and Francis Online.
One of the challenges of studying the neutronics of reactors is to generate reliable parameterized libraries that contain information to simulate the core in all possible operational and transient conditions. These libraries must include tables of cross sections and other neutronic and kinetic parameters and are obtained by simulating all the segments in a transport code. At the lattice level, one can use branch calculations to change “instantaneously” the feedback parameters as a function of burnup. When using random sampling for the lattice calculations, one can obtain statistical information about the output parameters and use it in a core simulation to characterize the accuracy of data estimating uncertainties when simulating a heterogeneous system at different scales of detail.
This work presents the methodology to generate NEMTAB libraries from data obtained in the SCALE code system to be used in PARCS simulations. The code TXT2NTAB is used to reorder the cross-section tables in NEMTAB format and generate another NEMTAB of standard deviation. With these libraries, the authors perform a steady-state calculation for a light water reactor to propagate several uncertainties at the core level. The methodology allows obtaining statistical information of the most important output parameters: multiplication factor keff, axial power peak Pz, and axial peak node Nz.