ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yuichi Morimoto, Masanori Akaike, Satoshi Takeo, Hiromi Maruyama
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1652-1660
Technical Paper | doi.org/10.1080/00295450.2019.1580529
Articles are hosted by Taylor and Francis Online.
The Fukushima Daiichi Nuclear Power Plants (1FNPPs) are thought to be subcritical, but the condition will be changed during the fuel debris retrieval. Subcriticality control is one of the most important processes to eliminate the possibility of criticality through the decommissioning. For the subcriticality control, it is important to properly evaluate the status of criticality. We propose a statistical evaluation method for the criticality of the 1FNPPs with various uncertainties. Although physical parameters related to the criticality are still uncertain, conservative assumptions may lead to excessive requirements for the criticality control system. The goal of the proposed method is to construct a methodology to evaluate the realistic status of the plants based on useful information about the fuel debris observed by current and future in-core investigations and obtained by accident analysis codes. The method is composed of sampling methods for physical parameters, a criticality evaluation method based on a continuous-energy Monte Carlo code, and processing methods to evaluate the results. Physical parameters related to criticality such as debris size, porosity fraction, structure material contamination, corrosion depth, and so on are sampled from predetermined probability distributions based on knowledge for the in-core status. Calculated results are processed statistically to give probability distributions of neutron multiplication factors. From these results, physical parameters that have strong correlations with the neutron multiplication factor can be identified. In the case that the neutron multiplication factor is estimated from some other observation results, posterior distribution of physical parameters can be determined by the Bayesian estimation method. To demonstrate the method, statistical criticality evaluations are made for 1FNPP Unit 1. The fuel debris of the 1FNPP is assumed to be located at the lower plenum, the pedestal, and the drywell. The distribution of the fuel debris is located by the results of the severe accident code MAAP. Physical parameters are determined according to the characteristics list given by the fuel debris characterization project. The Bayesian estimate of stainless steel fraction based on the neutron multiplication factor evaluated by the ratio of 88Kr to 135Xe was reported. The results suggest that the criticality risk is extremely small for 1FNPP Unit 1.