ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Petruzzi
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1554-1566
Technical Paper | doi.org/10.1080/00295450.2019.1632092
Articles are hosted by Taylor and Francis Online.
Predictive Modeling Methodology constitutes an innovative approach to perform uncertainty analysis (UA) that reduces the subjective and user-defined ways to manage experimental data and derive uncertainty of input parameters that characterize the Propagation of Input Uncertainties (PIU) and/or Propagation of Output Accuracies (POA) methods.
The Code with the capability of Adjoint Sensitivity and Uncertainty AnaLysis by Internal Data ADjustment and assimilation (CASUALIDAD) method can be developed as a fully deterministic method based on advanced mathematical tools to internally perform in the thermal-hydraulic system code the sensitivity analysis (SA) and the UA. The method is based upon powerful mathematical tools to perform the SA and upon the Data Adjustment and Assimilation methodology by which experimental observations are combined with code predictions and their respective errors through the application of the Bayes theorem and of the Principle of Maximum Likelihood to provide an improved estimate of the system state and of the associated uncertainty considering all input parameters that affect any prediction.
The methodology has been structured in two main steps. The first step generates the database of improved estimations (IEs) starting from the available set of experimental data and related qualified calculations. The second step deals with the use of the selected (from the obtained database) set of IEs for the uncertainty evaluation of the predicted nuclear power plant transient scenario.
The proposed methodology clearly interrelates in a consistent and robust framework the code validation issue with the evaluation of the uncertainty of code responses passing through the quantification of input uncertainty parameters of code models, thus constituting a step forward with respect to the subjectivity of the current methods based on PIU and/or POA.