ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
A. Petruzzi
Nuclear Technology | Volume 205 | Number 12 | December 2019 | Pages 1554-1566
Technical Paper | doi.org/10.1080/00295450.2019.1632092
Articles are hosted by Taylor and Francis Online.
Predictive Modeling Methodology constitutes an innovative approach to perform uncertainty analysis (UA) that reduces the subjective and user-defined ways to manage experimental data and derive uncertainty of input parameters that characterize the Propagation of Input Uncertainties (PIU) and/or Propagation of Output Accuracies (POA) methods.
The Code with the capability of Adjoint Sensitivity and Uncertainty AnaLysis by Internal Data ADjustment and assimilation (CASUALIDAD) method can be developed as a fully deterministic method based on advanced mathematical tools to internally perform in the thermal-hydraulic system code the sensitivity analysis (SA) and the UA. The method is based upon powerful mathematical tools to perform the SA and upon the Data Adjustment and Assimilation methodology by which experimental observations are combined with code predictions and their respective errors through the application of the Bayes theorem and of the Principle of Maximum Likelihood to provide an improved estimate of the system state and of the associated uncertainty considering all input parameters that affect any prediction.
The methodology has been structured in two main steps. The first step generates the database of improved estimations (IEs) starting from the available set of experimental data and related qualified calculations. The second step deals with the use of the selected (from the obtained database) set of IEs for the uncertainty evaluation of the predicted nuclear power plant transient scenario.
The proposed methodology clearly interrelates in a consistent and robust framework the code validation issue with the evaluation of the uncertainty of code responses passing through the quantification of input uncertainty parameters of code models, thus constituting a step forward with respect to the subjectivity of the current methods based on PIU and/or POA.